您好、欢迎来到现金彩票网!
当前位置:2019欢乐棋牌 > 最大标签数 >

如何获得决策树的最大深度max_depth?

发布时间:2019-07-05 05:16 来源:未知 编辑:admin

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  展开全部通俗来讲,决策树的构建过程就是将数据根据其特征分布划分到不同的区域,使得同一个区域的样本有尽可能一致的类别标签。在决策树构建的过程中,我们需要一个衡量标准来确定每次数据划分所带来的收益,这个标准就是信息熵,以0-1二分类问题为例,衡量一个节点的信息。熵越高,则混合的数据也越多,得到熵之后,就可以按照获得最大增益的方式来划分数据集。

  - max_depth:树的最大深度,也就是说当树的深度到达max_depth的时候无论还有多少可以分支的特征,决策树都会停止运算.

  - min_samples_split: 分裂所需的最小数量的节点数.当叶节点的样本数量小于该参数后,则不再生成分支.该分支的标签分类以该分支下标签最多的类别为准

  - min_samples_leaf; 一个分支所需要的最少样本数,如果在分支之后,某一个新增叶节点的特征样本数小于该超参数,则退回,不再进行剪枝.退回后的叶节点的标签以该叶节点中最多的标签你为准

http://byrdsbrain.com/zuidabiaoqianshu/183.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有